Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Psychiatry Neurosci ; 49(2): E135-E142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569725

RESUMO

BACKGROUND: Recent reports have indicated that symptom exacerbation after a period of improvement, referred to as relapse, in early-stage psychosis could result in brain changes and poor disease outcomes. We hypothesized that substantial neuroimaging alterations may exist among patients who experience relapse in early-stage psychosis. METHODS: We studied patients with psychosis within 2 years after the first psychotic event and healthy controls. We divided patients into 2 groups, namely those who did not experience relapse between disease onset and the magnetic resonance imaging (MRI) scan (no-relapse group) and those who did experience relapse between these 2 timings (relapse group). We analyzed 3003 functional connectivity estimates between 78 regions of interest (ROIs) derived from resting-state functional MRI data by adjusting for demographic and clinical confounding factors. RESULTS: We studied 85 patients, incuding 54 in the relapse group and 31 in the no-relapse group, along with 94 healthy controls. We observed significant differences in 47 functional connectivity estimates between the relapse and control groups after multiple comparison corrections, whereas no differences were found between the no-relapse and control groups. Most of these pathological signatures (64%) involved the thalamus. The Jonckheere-Terpstra test indicated that all 47 functional connectivity changes had a significant cross-group progression from controls to patients in the no-relapse group to patients in the relapse group. LIMITATIONS: Longitudinal studies are needed to further validate the involvement and pathological importance of the thalamus in relapse. CONCLUSION: We observed pathological differences in neuronal connectivity associated with relapse in early-stage psychosis, which are more specifically associated with the thalamus. Our study implies the importance of considering neurobiological mechanisms associated with relapse in the trajectory of psychotic disorders.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Doença Crônica , Recidiva
2.
Schizophrenia (Heidelb) ; 10(1): 29, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429320

RESUMO

Understanding the biological underpinning of relapse could improve the outcomes of patients with psychosis. Relapse is elicited by multiple reasons/triggers, but the consequence frequently accompanies deteriorations of brain function, leading to poor prognosis. Structural brain imaging studies have recently been pioneered to address this question, but a lack of molecular investigations is a knowledge gap. Following a criterion used for recent publications by others, we defined the experiences of relapse by hospitalization(s) due to psychotic exacerbation. We hypothesized that relapse-associated molecules might be underscored from the neurometabolites whose levels have been different between overall patients with early-stage psychosis and healthy subjects in our previous report. In the present study, we observed a significant decrease in the levels of N-acetyl aspartate in the anterior cingulate cortex and thalamus in patients who experienced relapse compared to patients who did not. Altogether, decreased N-acetyl aspartate levels may indicate relapse-associated deterioration of neuronal networks in patients.

3.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398476

RESUMO

Neuroinflammation through enhanced innate immunity is thought play a role in the pathogenesis of Parkinson's disease (PD). Methods for monitoring neuroinflammation in living patients with PD are currently limited to positron emission tomography (PET) ligands that lack specificity in labeling immune cells in the nervous system. The colony stimulating factor 1 receptor (CSF1R) plays a crucial role in microglial function, an important cellular contributor to the nervous system's innate immune response. Using immunologic methods, we show that CSF1R in human brain is colocalized with the microglial marker, ionized calcium binding adaptor molecule 1 (Iba1). In PD, CSF1R immunoreactivity is significantly increased in PD across multiple brain regions, with the largest differences in the midbrain versus controls. Autoradiography revealed significantly increased [3H]JHU11761 binding in the inferior parietal cortex of PD patients. PET imaging demonstrated that higher [11C]CPPC binding in the striatum was associated with greater motor disability in PD. Furthermore, increased [11C]CPPC binding in various regions correlated with more severe motor disability and poorer verbal fluency. This study finds that CSF1R expression is elevated in PD and that [11C]CPPC-PET imaging of CSF1R is indicative of motor and cognitive impairments in the early stages of the disease. Moreover, the study underscores the significance of CSF1R as a promising biomarker for neuroinflammation in Parkinson's disease, suggesting its potential use for non-invasive assessment of disease progression and severity, leading to earlier diagnosis and targeted interventions.

4.
JAMA Netw Open ; 6(10): e2340580, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37902750

RESUMO

Importance: Pilot studies that involved early imaging of the 18 kDa translocator protein (TSPO) using positron emission tomography (PET) indicated high levels of TSPO in the brains of active or former National Football League (NFL) players. If validated further in larger studies, those findings may have implications for athletes involved in collision sport. Objective: To test for higher TSPO that marks brain injury and repair in a relatively large, unique cohort of former NFL players compared with former elite, noncollision sport athletes. Design, Setting, and Participants: This cross-sectional study used carbon 11-labeled N,N-diethyl-2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide positron emission tomography ([11C]DPA-713 PET) data from former NFL players within 12 years of last participation in the NFL and elite noncollision sport athletes from across the US. Participants were enrolled between April 2018 and February 2023. Main outcomes and measures: Regional [11C]DPA-713 total distribution volume from [11C]DPA-713 PET that is a measure of regional brain TSPO; regional brain volumes on magnetic resonance imaging; neuropsychological performance, including attention, executive function, and memory domains. Results: This study included 27 former NFL players and 27 former elite, noncollision sport athletes. Regional TSPO levels were higher in former NFL players compared with former elite, noncollision sport athletes (unstandardized ß coefficient, 1.08; SE, 0.22; 95% CI, 0.65 to 1.52; P < .001). The magnitude of the group difference depended on region, with largest group differences in TSPO in cingulate and frontal cortices as well as hippocampus. Compared with noncollision sport athletes, former NFL players performed worse in learning (mean difference [MD], -0.70; 95% CI, -1.14 to -0.25; P = .003) and memory (MD, -0.77; 95% CI, -1.24 to -0.30; P = .002), with no correlation between total gray matter TSPO and these cognitive domains. Conclusions and relevance: In this cross-sectional study using [11C]DPA-713 PET, higher brain TSPO was found in former NFL players compared with noncollision sport athletes. This finding is consistent with neuroimmune activation even after cessation of NFL play. Future longitudinal [11C]DPA-713 PET and neuropsychological testing promises to inform whether neuroimmune-modulating therapy may be warranted.


Assuntos
Lesões Encefálicas , Futebol Americano , Humanos , Estudos Transversais , Neuroimagem , Receptores de GABA
5.
J Alzheimers Dis ; 96(1): 215-227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718818

RESUMO

BACKGROUND: Neuropathological and neuroimaging studies have demonstrated degeneration of the serotonin system in Alzheimer's disease (AD). Neuroimaging studies have extended these observations to the preclinical stages of AD, mild cognitive impairment (MCI). Serotonin degeneration has been observed also in transgenic amyloid mouse models, prior to widespread cortical distribution of amyloid-ß (Aß). OBJECTIVE: The present study evaluated the regional distribution of the serotonin transporter (5-HTT) and of Aß in individuals with MCI and healthy older controls, as well as the contribution of 5-HTT and Aß to cognitive deficits. METHODS: Forty-nine MCI participants and 45 healthy older controls underwent positron emission tomography (PET) imaging of 5-HTT and Aß, structural magnetic resonance imaging and neuropsychological assessments. RESULTS: Lower cortical, striatal, and limbic 5-HTT and higher cortical Aß was observed in MCIs relative to healthy controls. Lower 5-HTT, mainly in limbic regions, was correlated with greater deficits in auditory-verbal and visual-spatial memory and semantic, not phonemic fluency. Higher cortical A ß was associated with greater deficits in auditory-verbal and visual-spatial memory and in semantic, not phonemic fluency. When modeling the association between cognition, gray matter volumes and Aß, inclusion of 5-HTT in limbic and in select cortical regions significantly improved model fit for auditory-verbal and visual-spatial memory and semantic, but not phonemic fluency. CONCLUSIONS: These results support the role of serotonin degeneration in the memory and semantic fluency deficits observed in MCI.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Animais , Camundongos , Humanos , Serotonina , Disfunção Cognitiva/patologia , Transtornos Cognitivos/complicações , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Cognição , Tomografia por Emissão de Pósitrons
6.
Eur J Nucl Med Mol Imaging ; 50(12): 3659-3665, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37458759

RESUMO

PURPOSE: Soluble epoxide hydrolase (sEH) is an enzyme that shapes immune signaling through its role in maintaining the homeostasis of polyunsaturated fatty acids and their related byproducts. [18F]FNDP is a radiotracer developed for use with positron emission tomography (PET) to image sEH, which has been applied to imaging sEH in the brains of healthy individuals. Here, we report the test-retest repeatability of [18F]FNDP brain PET binding and [18F]FNDP whole-body dosimetry in healthy individuals. METHODS: Seven healthy adults (4 men, 3 women, ages 40.1 ± 4.6 years) completed [18F]FNDP brain PET on two occasions within a period of 14 days in a test-retest study design. [18F]FNDP regional total distribution volume (VT) values were derived from modeling time-activity data with a metabolite-corrected arterial input function. Test-retest variability, mean absolute deviation, and intraclass correlation coefficient (ICC) were investigated. Six other healthy adults (3 men, 3 women, ages 46.0 ± 7.0 years) underwent [18F]FNDP PET/CT for whole-body dosimetry, which was acquired over 4.5 h, starting immediately after radiotracer administration. Organ-absorbed doses and the effective dose were then estimated. RESULTS: The mean test-retest difference in regional VT (ΔVT) was 0.82 ± 5.17%. The mean absolute difference in regional VT was 4.01 ± 3.33%. The ICC across different brain regions ranged from 0.92 to 0.99. The organs with the greatest radiation-absorbed doses included the gallbladder (0.081 ± 0.024 mSv/MBq), followed by liver (0.077 ± 0.018 mSv/MBq) and kidneys (0.063 ± 0.006 mSv/MBq). The effective dose was 0.020 ± 0.003 mSv/MBq. CONCLUSION: These data support a favorable test-retest repeatability of [18F]FNDP brain PET regional VT. The radiation dose to humans from each [18F]FNDP PET scan is similar to that of other 18F-based PET radiotracers.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Masculino , Adulto , Humanos , Feminino , Tomografia por Emissão de Pósitrons/métodos , Radiometria , Doses de Radiação , Neuroimagem
7.
AIDS ; 37(9): 1419-1424, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37070549

RESUMO

OBJECTIVE: Neuroimmune activation is a putative driver of cognitive impairment in people with HIV (PWH), even in the age of modern antiretroviral therapy. Nevertheless, imaging of the microglial marker, the 18 kDa translocator protein (TSPO), with positron emission tomography (PET) in treated PWH has yielded inconclusive findings. One potential reason for the varied TSPO results is a lack of cell-type specificity of the TSPO target. DESIGN: [ 11 C]CPPC, 5-cyano- N -(4-(4-[ 11 C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxaminde, is a radiotracer for use with PET to image the colony stimulating factor 1 receptor (CSF1R). The CSF1R is expressed on microglia and central nervous system macrophages, with little expression on other cell types. We used [ 11 C]CPPC PET in virally-suppressed- (VS)-PWH and HIV-uninfected individuals to estimate the effect sizes of higher CSF1R in the brains of VS-PWH. METHODS: Sixteen VS-PWH and 15 HIV-uninfected individuals completed [ 11 C]CPPC PET. [ 11 C]CPPC binding (V T ) in nine regions was estimated using a one-tissue compartmental model with a metabolite-corrected arterial input function, and compared between groups. RESULTS: Regional [ 11 C]CPPC V T did not significantly differ between groups after age- and sex- adjustment [unstandardized beta coefficient ( B ) = 1.84, standard error (SE) = 1.18, P  = 0.13]. The effect size was moderate [Cohen's d  = 0.56, 95% confidence interval (CI) -0.16, 1.28), with strongest trend of higher V T in VS-PWH in striatum and parietal cortex (each P  = 0.04; Cohen's d  = 0.71 and 0.72, respectively). CONCLUSIONS: A group difference in [ 11 C]CPPC V T was not observed between VS-PWH and HIV-uninfected individuals in this pilot, although the observed effect sizes suggest the study was underpowered to detect regional group differences in binding.


Assuntos
Encéfalo , Infecções por HIV , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Microglia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Imagem Molecular
8.
Eur J Nucl Med Mol Imaging ; 50(8): 2386-2393, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36877235

RESUMO

PURPOSE: We report findings from the first-in-human study of [11C]MDTC, a radiotracer developed to image the cannabinoid receptor type 2 (CB2R) with positron emission tomography (PET). METHODS: Ten healthy adults were imaged according to a 90-min dynamic PET protocol after bolus intravenous injection of [11C]MDTC. Five participants also completed a second [11C]MDTC PET scan to assess test-retest reproducibility of receptor-binding outcomes. The kinetic behavior of [11C]MDTC in human brain was evaluated using tissue compartmental modeling. Four additional healthy adults completed whole-body [11C]MDTC PET/CT to calculate organ doses and the whole-body effective dose. RESULTS: [11C]MDTC brain PET and [11C]MDTC whole-body PET/CT was well-tolerated. A murine study found evidence of brain-penetrant radiometabolites. The model of choice for fitting the time activity curves (TACs) across brain regions of interest was a three-tissue compartment model that includes a separate input function and compartment for the brain-penetrant metabolites. Regional distribution volume (VT) values were low, indicating low CB2R expression in the brain. Test-retest reliability of VT demonstrated a mean absolute variability of 9.91%. The measured effective dose of [11C]MDTC was 5.29 µSv/MBq. CONCLUSION: These data demonstrate the safety and pharmacokinetic behavior of [11C]MDTC with PET in healthy human brain. Future studies identifying radiometabolites of [11C]MDTC are recommended before applying [11C]MDTC PET to assess the high expression of the CB2R by activated microglia in human brain.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Adulto , Humanos , Animais , Camundongos , Reprodutibilidade dos Testes , Compostos Radiofarmacêuticos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptores de Canabinoides/metabolismo
9.
Mol Psychiatry ; 28(5): 2039-2048, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806762

RESUMO

Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.


Assuntos
Ácido Glutâmico , Esquizofrenia , Masculino , Humanos , Ácido Glutâmico/metabolismo , Esquizofrenia/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
10.
Mol Psychiatry ; 28(5): 2018-2029, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732587

RESUMO

Seven Tesla magnetic resonance spectroscopy (7T MRS) offers a precise measurement of metabolic levels in the human brain via a non-invasive approach. Studying longitudinal changes in brain metabolites could help evaluate the characteristics of disease over time. This approach may also shed light on how the age of study participants and duration of illness may influence these metabolites. This study used 7T MRS to investigate longitudinal patterns of brain metabolites in young adulthood in both healthy controls and patients. A four-year longitudinal cohort with 38 patients with first episode psychosis (onset within 2 years) and 48 healthy controls was used to examine 10 brain metabolites in 5 brain regions associated with the pathophysiology of psychosis in a comprehensive manner. Both patients and controls were found to have significant longitudinal reductions in glutamate in the anterior cingulate cortex (ACC). Only patients were found to have a significant decrease over time in γ-aminobutyric acid, N-acetyl aspartate, myo-inositol, total choline, and total creatine in the ACC. Together we highlight the ACC with dynamic changes in several metabolites in early-stage psychosis, in contrast to the other 4 brain regions that also are known to play roles in psychosis. Meanwhile, glutathione was uniquely found to have a near zero annual percentage change in both patients and controls in all 5 brain regions during a four-year follow-up in young adulthood. Given that a reduction of the glutathione in the ACC has been reported as a feature of treatment-refractory psychosis, this observation further supports the potential of glutathione as a biomarker for this subset of patients with psychosis.


Assuntos
Glutamina , Transtornos Psicóticos , Humanos , Adulto Jovem , Adulto , Glutamina/metabolismo , Transtornos Psicóticos/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Ácido Aspártico/metabolismo , Glutationa/metabolismo
11.
World J Biol Psychiatry ; 24(2): 178-186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35678361

RESUMO

OBJECTIVES: Olfactory dysfunction is reproducibly reported in psychotic disorders, particularly in association with negative symptoms. The superior frontal gyrus (SFG) has been frequently studied in patients with psychotic disorders, in particular with their associations with negative symptoms. The relationship between olfactory functions and brain structure has been studied in healthy controls (HCs). Nevertheless, the studies with patients with psychotic disorders are limited. Here we report the olfactory-brain relationship in a first episode psychosis (FEP) cohort through both hypothesis-driven (centred on the SFG) and data-driven approaches. METHODS: Using data from 88 HCs and 76 FEP patients, we evaluated the correlation between olfactory functions and structural/resting-state functional magnetic resonance imaging (MRI) data. RESULTS: We found a significant correlation between the left SFG volume and odour discrimination in FEP patients, but not in HCs. We also observed a significant correlation between rs-fMRI connectivity involving the left SFG and odour discrimination in FEP patients, but not in HCs. The data-driven approach didn't observe any significant correlations, possibly due to insufficient statistical power. CONCLUSION: The left SFG may be a promising brain region in the context of olfactory dysfunction and negative symptoms in FEP.


Assuntos
Transtornos do Olfato , Transtornos Psicóticos , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/complicações , Encéfalo/patologia , Transtornos do Olfato/complicações
12.
EJNMMI Res ; 12(1): 64, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175737

RESUMO

PURPOSE: Study of the contribution of microglia to onset and course of several neuropsychiatric conditions is challenged by the fact that these resident immune cells often take on different phenotypes and functions outside the living brain. Imaging microglia with radiotracers developed for use with positron emission tomography (PET) allows researchers to study these cells in their native tissue microenvironment. However, many relevant microglial imaging targets such as the 18 kDa translocator protein are also expressed on non-microglial cells, which can complicate the interpretation of PET findings. 11C-CPPC was developed to image the macrophage colony-stimulating factor 1 receptor, a target that is expressed largely by microglia relative to other cell types in the brain. Our prior work with 11C-CPPC demonstrated its high, specific uptake in brains of rodents and nonhuman primates with neuroinflammation, which supports the current first-in-human evaluation of its pharmacokinetic behavior in the brains of healthy individuals. METHODS: Eight healthy nonsmoker adults completed a 90-min dynamic PET scan that began with bolus injection of 11C-CPPC. Arterial blood sampling was collected in order to generate a metabolite-corrected arterial input function. Tissue time-activity curves (TACs) were generated using regions of interest identified from co-registered magnetic resonance imaging data. One- and two-tissue compartmental models (1TCM and 2TCM) as well as Logan graphical analysis were compared. RESULTS: Cortical and subcortical tissue TACs peaked by 37.5 min post-injection of 11C-CPPC and then declined. The 1TCM was preferred. Total distribution volume (VT) values computed from 1TCM aligned well with those from Logan graphical analysis (t* = 30), with VT values relatively high in thalamus, striatum, and most cortical regions, and with relatively lower VT in hippocampus, total white matter, and cerebellar cortex. CONCLUSION: Our results extend support for the use of 11C-CPPC with PET to study microglia in the human brain.

13.
Diagnostics (Basel) ; 12(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010295

RESUMO

While machine learning (ML) methods may significantly improve image quality for SPECT imaging for the diagnosis and monitoring of Parkinson's disease (PD), they require a large amount of data for training. It is often difficult to collect a large population of patient data to support the ML research, and the ground truth of lesion is also unknown. This paper leverages a generative adversarial network (GAN) to generate digital brain phantoms for training ML-based PD SPECT algorithms. A total of 594 PET 3D brain models from 155 patients (113 male and 42 female) were reviewed and 1597 2D slices containing the full or a portion of the striatum were selected. Corresponding attenuation maps were also generated based on these images. The data were then used to develop a GAN for generating 2D brain phantoms, where each phantom consisted of a radioactivity image and the corresponding attenuation map. Statistical methods including histogram, Fréchet distance, and structural similarity were used to evaluate the generator based on 10,000 generated phantoms. When the generated phantoms and training dataset were both passed to the discriminator, similar normal distributions were obtained, which indicated the discriminator was unable to distinguish the generated phantoms from the training datasets. The generated digital phantoms can be used for 2D SPECT simulation and serve as the ground truth to develop ML-based reconstruction algorithms. The cumulated experience from this work also laid the foundation for building a 3D GAN for the same application.

14.
Transl Psychiatry ; 12(1): 99, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273151

RESUMO

Under the hypothesis that olfactory neural epithelium gene expression profiles may be useful to look for disease-relevant neuronal signatures, we examined microarray gene expression in olfactory neuronal cells and underscored Notch-JAG pathway molecules in association with schizophrenia (SZ). The microarray profiling study underscored JAG1 as the most promising candidate. Combined with further validation with real-time PCR, downregulation of NOTCH1 was statistically significant. Accordingly, we reverse-translated the significant finding from a surrogate tissue for neurons, and studied the behavioral profile of Notch1+/- mice. We found a specific impairment in social novelty recognition, whereas other behaviors, such as sociability, novel object recognition and olfaction of social odors, were normal. This social novelty recognition deficit was male-specific and was rescued by rapamycin treatment. Based on the results from the animal model, we next tested whether patients with psychosis might have male-specific alterations in social cognition in association with the expression of NOTCH1 or JAG1. In our first episode psychosis cohort, we observed a specific correlation between the expression of JAG1 and a face processing measure only in male patients. The expression of JAG1 was not correlated with any other cognitive and symptomatic scales in all subjects. Together, although we acknowledge the pioneering and exploratory nature, the present work that combines both human and animal studies in a reciprocal manner suggests a novel role for the Notch-JAG pathway in a behavioral dimension(s) related to social cognition in psychotic disorders in a male-specific manner.


Assuntos
Transtornos Psicóticos , Animais , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Mucosa Olfatória
15.
Schizophr Res ; 243: 489-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34887147

RESUMO

Affective and non-affective psychotic disorders are associated with variable levels of impairment in affective processing, but this domain typically has been examined via presentation of static facial images. We compared performance on a dynamic facial expression identification task across six emotions (sad, fear, surprise, disgust, anger, happy) in individuals with psychotic disorders (bipolar with psychotic features [PBD] = 113, schizoaffective [SAD] = 163, schizophrenia [SZ] = 181) and healthy controls (HC; n = 236) derived from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). These same individuals with psychotic disorders were also grouped by B-SNIP-derived Biotype (Biotype 1 [B1] = 115, Biotype 2 [B2] = 132, Biotype 3 [B3] = 158), derived from a cluster analysis applied to a large biomarker panel that did not include the current data. Irrespective of the depicted emotion, groups differed in accuracy of emotion identification (P < 0.0001). The SZ group demonstrated lower accuracy versus HC and PBD groups; the SAD group was less accurate than the HC group (Ps < 0.02). Similar overall group differences were evident in speed of identifying emotional expressions. Controlling for general cognitive ability did not eliminate most group differences on accuracy but eliminated almost all group differences on reaction time for emotion identification. Results from the Biotype groups indicated that B1 and B2 had more severe deficits in emotion recognition than HC and B3, meanwhile B3 did not show significant deficits. In sum, this characterization of facial emotion recognition deficits adds to our emerging understanding of social/emotional deficits across the psychosis spectrum.


Assuntos
Transtorno Bipolar , Reconhecimento Facial , Transtornos Psicóticos , Esquizofrenia , Transtorno Bipolar/psicologia , Emoções , Expressão Facial , Humanos , Fenótipo , Transtornos Psicóticos/psicologia , Esquizofrenia/complicações
16.
Mol Psychiatry ; 27(2): 1184-1191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34642460

RESUMO

Treatment resistant (TR) psychosis is considered to be a significant cause of disability and functional impairment. Numerous efforts have been made to identify the clinical predictors of TR. However, the exploration of molecular and biological markers is still at an early stage. To understand the TR condition and identify potential molecular and biological markers, we analyzed demographic information, clinical data, structural brain imaging data, and molecular brain imaging data in 7 Tesla magnetic resonance spectroscopy from a first episode psychosis cohort that includes 136 patients. Age, gender, race, smoking status, duration of illness, and antipsychotic dosages were controlled in the analyses. We found that TR patients had a younger age at onset, more hospitalizations, more severe negative symptoms, a reduction in the volumes of the hippocampus (HP) and superior frontal gyrus (SFG), and a reduction in glutathione (GSH) levels in the anterior cingulate cortex (ACC), when compared to non-TR patients. The combination of multiple markers provided a better classification between TR and non-TR patients compared to any individual marker. Our study shows that ACC-GSH, HP and SFG volumes, and age at onset, could potentially be biomarkers for TR diagnosis, while hospitalization and negative symptoms could be used to evaluate the progression of the disease. Multimodal cohorts are essential in obtaining a comprehensive understanding of brain disorders.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Antipsicóticos/uso terapêutico , Biomarcadores , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/tratamento farmacológico
17.
Sci Adv ; 7(48): eabf6935, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34818031

RESUMO

Schizophrenia is a polygenetic disorder whose clinical onset is often associated with behavioral stress. Here, we present a model of disease pathogenesis that builds on our observation that the synaptic immediate early gene NPTX2 is reduced in cerebrospinal fluid of individuals with recent onset schizophrenia. NPTX2 plays an essential role in maintaining excitatory homeostasis by adaptively enhancing circuit inhibition. NPTX2 function requires activity-dependent exocytosis and dynamic shedding at synapses and is coupled to circadian behavior. Behavior-linked NPTX2 trafficking is abolished by mutations that disrupt select activity-dependent plasticity mechanisms of excitatory neurons. Modeling NPTX2 loss of function results in failure of parvalbumin interneurons in their adaptive contribution to behavioral stress, and animals exhibit multiple neuropsychiatric domains. Because the genetics of schizophrenia encompasses diverse proteins that contribute to excitatory synapse plasticity, the identified vulnerability of NPTX2 function can provide a framework for assessing the impact of genetics and the intersection with stress.

18.
Schizophr Res ; 238: 99-107, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649085

RESUMO

The clinical importance of social cognition is well acknowledged in patients with psychosis, in particular those with first episode psychosis (FEP). Nevertheless, its brain substrates and circuitries remain elusive, lacking precise analysis between multimodal brain characteristics and behavioral sub-dimensions within social cognition. In the present study, we examined face processing of social cognition in 71 FEP patients and 77 healthy controls (HCs). We looked for a possible correlation between face processing and multimodal MRI characteristics such as resting-state functional connectivity (rsFC) and brain volume. We observed worse recognition accuracy, longer recognition response time, and longer memory response time in FEP patients when compared with HCs. Of these, memory response time was selectively correlated with specific rsFCs, which included the right subcallosal sub-region of BA24 in the ACC (scACC), only in FEP patients. The volume of this region was also correlated with memory response time in FEP patients. The scACC is functionally and structurally important in FEP-associated abnormalities of face processing measures in social cognition.


Assuntos
Reconhecimento Facial , Transtornos Psicóticos , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/complicações , Transtornos Psicóticos/diagnóstico por imagem , Cognição Social
19.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914710

RESUMO

BACKGROUNDIdentifying a quantitative biomarker of neuropsychiatric dysfunction in people with HIV (PWH) remains a significant challenge in the neuroHIV field. The strongest evidence to date implicates the role of monocytes in central nervous system (CNS) dysfunction in HIV, yet no study has examined monocyte subsets in blood as a correlate and/or predictor of neuropsychiatric function in virally suppressed PWH.METHODSIn 2 independent cohorts of virologically suppressed women with HIV (vsWWH; n = 25 and n = 18), whole blood samples were obtained either in conjunction with neuropsychiatric assessments (neuropsychological [NP] test battery, self-report depression and stress-related symptom questionnaires) or 1 year prior to assessments. Immune cell subsets were assessed by flow cytometry.RESULTSA higher proportion of intermediate monocytes (CD14+CD16+) was associated with lower global NP function when assessing monocytes concurrently and approximately 1 year before (predictive) NP testing. The same pattern was seen for executive function (mental flexibility) and processing speed. Conversely, there were no associations with monocyte subsets and depression or stress-related symptoms. Additionally, we found that a higher proportion of classical monocytes was associated with better cognition.CONCLUSIONAlthough it is widely accepted that lentiviral infection of the CNS targets cells of monocyte-macrophage-microglial lineage and is associated with an increase in intermediate monocytes in the blood and monocyte migration into the brain, the percentage of intermediate monocytes in blood of vsWWH has not been associated with neuropsychiatric outcomes. Our findings provide evidence for a new, easily measured, blood-based cognitive biomarker in vsWWH.FUNDINGR01-MH113512, R01-MH113512-S, P30-AI094189, R01-MH112391, R01-AI127142, R00-DA044838, U01-AI35004, and P30-MH075673.


Assuntos
Cognição , Depressão/imunologia , Infecções por HIV/imunologia , Monócitos/imunologia , Estresse Psicológico/imunologia , Adulto , Fármacos Anti-HIV/uso terapêutico , Depressão/psicologia , Função Executiva , Feminino , Citometria de Fluxo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/psicologia , Humanos , Imunofenotipagem , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estresse Psicológico/psicologia , Resposta Viral Sustentada
20.
Eur J Nucl Med Mol Imaging ; 48(10): 3122-3128, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585963

RESUMO

PURPOSE: Soluble epoxide hydrolase (sEH) is an enzyme with putative effect on neuroinflammation through its influence on the homeostasis of polyunsaturated fatty acids and related byproducts. sEH is an enzyme that metabolizes anti-inflammatory epoxy fatty acids to the corresponding, relatively inert 1,2-diols. A high availability or activity of sEH promotes vasoconstriction and inflammation in local tissues that may be linked to neuropsychiatric diseases. We developed [18F]FNDP to study sEH in vivo with positron emission tomography (PET). METHODS: Brain PET using bolus injection of [18F]FNDP followed by emission imaging lasting 90 or 180 min was completed in healthy adults (5 males, 2 females, ages 40-53 years). The kinetic behavior of [18F]FNDP was evaluated using a radiometabolite-corrected arterial plasma input function with compartmental or graphical modeling approaches. RESULTS: [18F]FNDP PET was without adverse effects. Akaike information criterion favored the two-tissue compartment model (2TCM) in all ten regions of interest. Regional total distribution volume (VT) values from each compartmental model and Logan analysis were generally well identified except for corpus callosum VT using the 2TCM. Logan analysis was assessed as the choice model due to stability of regional VT values from 90-min data and due to high correlation of Logan-derived regional VT values with those from the 2TCM. [18F]FNDP binding was higher in human cerebellar cortex and thalamus relative to supratentorial cortical regions, which aligns with reported expression patterns of the epoxide hydrolase 2 gene in human brain. CONCLUSION: These data support further use of [18F]FNDP PET to study sEH in human brain.


Assuntos
Epóxido Hidrolases , Tomografia por Emissão de Pósitrons , Adulto , Encéfalo/diagnóstico por imagem , Epóxido Hidrolases/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...